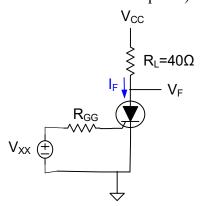
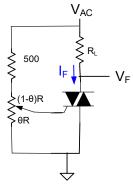
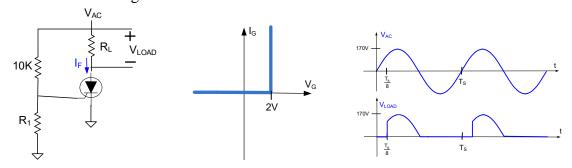

EE 330 Homework 11 Fall 2025 Due Friday November 7 at noon


Characteristics for an SCR and for a Triac are appended at the end of this assignment. Use these characteristics when solving the problems involving Thyristors. Unless specified to the contrary, assume all n-channel MOS transistors have model parameters $\mu_n C_{OX} = 250 \mu A/V^2$, $V_{Tn} = 0.4 V$, and $\lambda = 0$, all p-channel transistors have model parameters $\mu_p C_{OX} = \mu_n C_{OX}/3$, $V_{Tp} = -0.4 V$, and $\lambda = 0$, and all JFET devices are from a process with $I_{DSSn0} = 100 \mu A$, $I_{DSSp0} = 30 \mu A$, $V_{Pp} = 1 V$, $V_{Pn} = -1 V$, and , $\lambda = 0$.

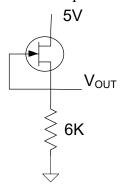
Problem 1 Consider the following circuit where $R_1=10K$. Size the device so that the amplifier has a voltage gain of -3.

Problem 2 A circuit using an SCR that is rated at current levels of 10A is shown below. Relevant parameters from the datasheet for this device are appended at the end to this assignment. Assume the voltage V_{CC} is fixed at 50V and that the SCR is initially off.


- a) If V_{XX} is increased to 12V to turn on the SCR, what is the maximum value of R_{GG} that can be used if the SCR must turn on for 0C < T < 80C.
- b) What will be the static power dissipation in the Anode when it is ON?
- What will be the static power dissipation in the Gate if the gate signal V_{XX} remains at 12V and the value determined in part a) is used for R_{GG} ?


Page 1

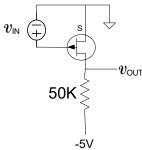
Problem 3 Assume the potentiometer in the following circuit has a full range value of $R=500\Omega$, $R_L=20\Omega$, and $V_{AC}=80\sin(2\pi60t)$. Assume the device is operating at a temperature of 25C and that it is characterized by the parameters given at the end of this assignment.


- a) Determine $V_F(t)$ if $\theta=0.1$
- b) Determine the average power dissipation in the Triac for the value of θ given in part a)
- c) Which quadrant or quadrants are used to trigger the triac in this circuit?

Problem 4 Consider the following circuit. The waveforms V_{AC} is the 60Hz line voltage. Assume the SCR has a gate trigger voltage of 2Vand that the relationship between the gate current and the gate voltage of the SCR is as shown on the $I_G:V_G$ plot on the right. Size the resistor R_1 so that the SCR turns on at $T_S/8$, $T_S+T_S/8$, $2T_S+T_S/8$,.... as shown below for two periods of the V_{LOAD} waveform. The time T_S is the period of the 60 Hz AC line voltage.

Problem 5 Assume the JFET in the following circuit has parameters I_{DSS} =100uA and V_P =-1V. Determine the output voltage.

Problem 6 Assume the drain current of a p-channel JFET is given by the expression

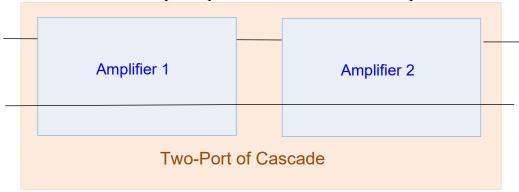

$$I_{D} = \begin{cases} 0 & V_{GS} > V_{P} \\ -\frac{2I_{DSSp0}W}{V_{P}^{2}L} \left(V_{GS} - V_{P} - \frac{V_{DS}}{2}\right)V_{DS} & -0.3 < V_{GS} < V_{P} \\ -\frac{I_{DSSp0}W}{L} \left(1 - \frac{V_{GS}}{V_{P}}\right)^{2} \left(1 - \lambda V_{DS}\right) & -0.3 < V_{GS} < V_{P} \end{cases} \qquad V_{DS} < V_{GS} - V_{P}$$

where the parameter I_{DDSp0} is related to the parameter I_{DDSp} that is often given in the model for a JFET by the expression

$$I_{DSSp} = \frac{W}{L} I_{DSSp0}$$

Develop a small-signal model of the JFET when operating in the saturation region.

Problem 7 Using the small-signal model of the JFET developed in the previous problem and the model parameters given at the top of this assignment, determine the operating point and small-signal voltage gain of the following circuit if $W=10\mu m$ and $L=15\mu m$.



Problem 8 Consider a two-port amplifier with a common terminal between the input and the output characterized by the parameters $y_{11}=10^{-4}$ A/V, $y_{12}=0$, $y_{21}=-10$ A/V and $y_{22}=0.1$ A/V.

- a) Is this amplifier unilateral?
- b) Express the small signal two-port model of this amplifier in terms of the small-signal amplifier parameters R_{IN} , R_{OUT} , A_V , and A_{VR} .
- c) If this amplifier is driven by a voltage source with 50Ω source impedance and loaded with a $1K\Omega$ resistor, determine the voltage gain.

d) If two of these amplifiers are cascaded, they also form a two-port amplifier. Determine the amplifier parameters for the cascaded amplifiers.

Problem 9-10 Implement a four-bit full adder with active low enable pin using Verilog. When the adder is disabled, all outputs should be low. Design a testbench proving function using Verilog. Submit module code, testbench code, and Modelsim waveforms.

SCR Specifications:

IDRM and IRRM — Peak off-state current at VDRM and VRRM

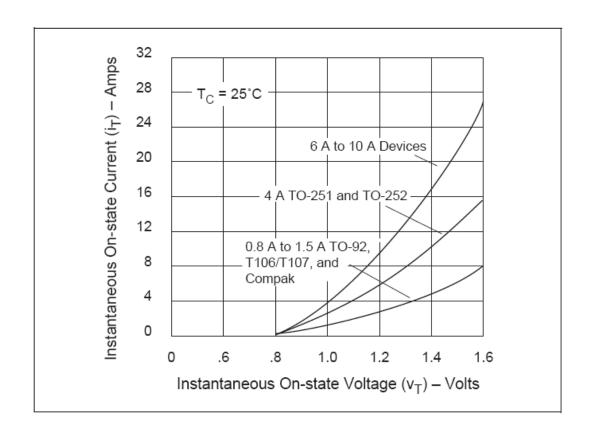
I_{GT} — DC gate trigger current V_D = 6 V dc; R_L = 100 Ω

I_{GM} — Peak gate current

I_H — DC holding current; initial on-state current = 20 mA

IT — Maximum on-state current

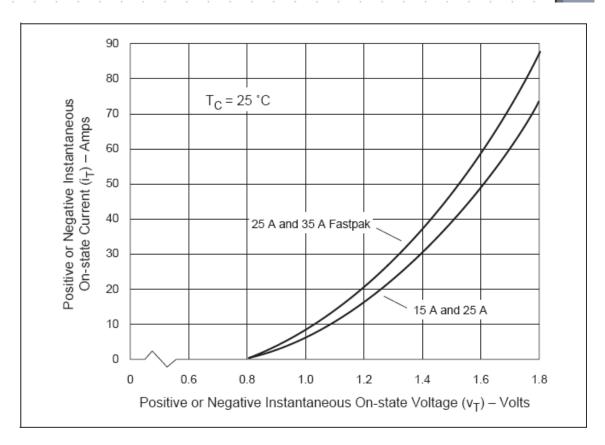
V_{DRM} and V_{RRM} — Repetitive peak off-state forward and reverse voltage

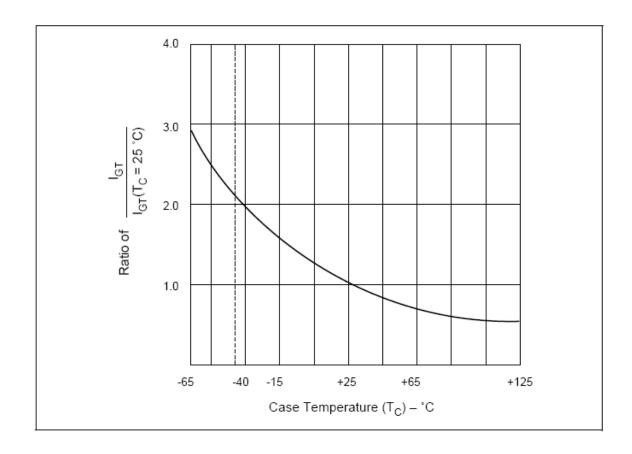

V_{GRM} — Peak reverse gate voltage

 V_{GT} — DC gate trigger voltage; V_D = 6 V dc; R_L = 100 Ω

V_{TM} — Peak on-state voltage

I _T		V _{DRM} & V _{RRM}	I _{GT}	I _{DRI}		V _{TM}
Am	nps			μAr	nps	
I _{T(RMS)}	I _{T(AV)}	Volts	μAmps	T _C = 25 °C	T _C = 110 °C	Volts
MAX	MAX	MIN	MAX	MAX	MAX	MAX
10	6.4	400	200	5	250	1.6


	V _{GT}		lн	I _{GM}	V_{GRM}	P _{GM}
-	Volts					
T _C = -40 °C	T _C = 25 °C	T _C = 110 °C	mAmps	Amps	Volts	Watts
	MAX		MAX		MIN	
1	8.0	0.25	6	1	6	1



TRIAC Specifications

V _{DRM}	I _{GT}				I _{DRM}			
ı			mAmps	;		mAmps		
Volts	QI	QII	QIII	QIV	QIV	T _C = 25 °C	T _C = 100 °C	T _C = 125 °C
MIN		MA	λX		TYP	MAX		
400	50	50	50			0.05	0.5	2

-	V _{TM}	V _{GT}	I _H	I _{GTM}	P _{GM}	P _{G(AV)}
٦	Volts	Volts				
	T _C = 25 °C	T _C = 25 °C	mAmps	Amps	Watts	Watts
-[]	1.6	2.5	70	2	20	0.5

Bipolar Process Characteristics

Parameter	Typical	$Tolerance^b$	Units			
Resistance and resistivity						
Substrate resistivity	16	±25%	$\Omega \cdot cm$			
n ⁺ buried collector diffusion	17	±35%	Ω / \square			
Epitaxial layer	1.6	±20%	Ω - cm			
p-base diffusion	160	±20%	$\Omega \setminus \square$			
p-resistive diffusion (optional)	1500	$\pm 40\%$	Ω / \square			
n ⁺ emitter diffusion	4.5	±30%	Ω / \square			
Metal	0.003		$\Omega \setminus \square$			
Contacts $(3\mu \times 3\mu)$	<4		Ω			
Metal-n+ emitter (contact plus	<1		Ω			
series resistance to BE junction)						
Metal-p-base ^c (contact plus	70		Ω			
series resistance)	100					
Metal-Epitaxial ^d (contact plus series resistance to BC junction)	120		Ω			
Breakdown voltages, leakage c	urrents, mig	ration currents, an	d operating conditions			
Reverse breakdown voltages						
n+ emitter to p-base	6.9	±50 mV	V			
p-base to epitaxial	70	±10	V			
Epitaxial to substrate	>80		V			
Maximum operating voltage	40		V			
Substrate leakage current	0.16		fA/μ^2			
Maximum metal current density	0.8		mA/μ width			
Maximum device operating	125		°C			
temperature (design)						
Maximum device operating	225		°C			
temperature (physical)						
	Capaci	tances				
Metal to epitaxial	0.022	±30%	fF/μ^2			
Metal to p-base diffusion	0.045	±30%	fF/μ^2			
Metal to n+ emitter diffusion	0.078	±30%	fF/μ^2			
n ⁺ buried collector to substrate (junction, bottom)	0.062	±30%	fF/μ^2			
Epitaxial to substrate (junction, bottom)	0.062	±30%	fF/μ^2			
Epitaxial to substrate (junction, sidewall)	1.6	±30%	fF/ μ perimeter			
Epitaxial to p-base diffusion (junction, bottom)	0.14	±30%	${ m fF}/\mu^2$			
Epitaxial to p-base diffusion (junction, sidewall)	7.9	±30%	fF/ μ perimeter			
p-base diffusion to n ⁺ emitter diffusion (junction, bottom)	0.78	±30%	fF/μ^2			
p-base diffusion to n + emitter diffusion (junction, sidewall)	3.1	±30%	fF/μ perimeter			

·	Dimension
1. n ⁺ buried collector diffusion (Yellow, Mask #1)	-
1.1 Width	3λ
1.2 Overlap of p-base diffusion (for vertical npn)	2λ
1.3 Overlap of n ⁺ emitter diffusion (for collector contact of	
vertical npn)	2λ
1.4 Overlap of p-base diffusion (for collector and emitter of late	
1.5 Overlap of n ⁺ emitter diffusion (for base contact of lateral p	pnp) 2λ
Isolation diffusion (Orange, Mask #2)	
2.1 Width	4λ
2.2 Spacing	24λ
2.3 Distance to n+ buried collector	14λ
p-base diffusion (Brown, Mask #3)	
3.1 Width	3λ -
3.2 Spacing	5λ
3.3 Distance to isolation diffusion	14λ
3.4 Width (resistor)	3λ
3.5 Spacing (as resistor)	3λ .
n+ emitter diffusion (Green, Mask #4)	
4.1 Width	3λ
4.2 Spacing	3λ
4.3 p-base diffusion overlap of n+ emitter diffusion (emitter in	base) 2λ
4.4 Spacing to isolation diffusion (for collector contact)	12λ
4.5 Spacing to p-base diffusion (for base contact of lateral pnp)	- 6λ
4.6 Spacing to p-base diffusion (for collector contact of vertical	npn) 6λ
	-
Contact (Black, Mask #5)	11 × 11
5.1 Size (exactly)	$4\lambda \times 4\lambda$ 2λ
5.2 Spacing	
5.3 Metal overlap of contact	λ
5.4 n ⁺ emitter diffusion overlap of contact	2λ
5.5 p-base diffusion overlap of contact	2λ
5.6 p-base to n+ emitter	3λ
5.7 Spacing to isolation diffusion	4λ

Metalization (Blue, Mask #6)	
6.1 Width	2λ
6.2 Spacing	2λ
6.3 Bonding pad size	$100 \ \mu \times 100 \ \mu$
6.4 Probe pad size	$75 \mu \times 75 \mu$
6.5 Bonding pad separation	50 μ
6.6 Bonding to probe pad	30 µ
6.7 Probe pad separation	30 μ
6.8 Pad to circuitry	40 μ
6.9 Maximum current density	$0.8 \mathrm{mA}/\mu \mathrm{widt}$
Passivation (Purple, Mask #7)	
7.1 Minimum bonding pad opening	$90 \ \mu \times 90 \ \mu$
7.2 Minimum probe pad opening	$65 \mu \times 65 \mu$
	6.1 Width 6.2 Spacing 6.3 Bonding pad size 6.4 Probe pad size 6.5 Bonding pad separation 6.6 Bonding to probe pad 6.7 Probe pad separation 6.8 Pad to circuitry 6.9 Maximum current density Passivation (Purple, Mask #7) 7.1 Minimum bonding pad opening

CMOS Process Characteristics

Process parameters for a typical a p-well CMOS process

	Typical	Tolerance b	Units
Square law m	odel parameters		
V _{T0} (threshold voltage)			
n-channel (V _{TN0})	0.75	± 0.25	v
p-channel (V _{TP0})	-0.75	± 0.25	v
K'(conduction factor)			
n-channel	24	± 6	$\mu A/V^2$
p-channel	8	± 1.5	μΑ/V ² μΑ/V ²
y(body effect)			
n-channel	0.8	± 0.4	$V^{1/2}$
p-channel	0.4	± 0.2	$V^{1/2}$
λ(channel length modulation)			
n-channel	0.01	± 50%	V^{-1}
p-channel	0.02	± 50%	V^{-1}
ϕ (surface potential)			
n- and p-channel	0.6	± 0.1	v
Process	parameters		
μ (channel mobility)			
n-channel	710		cm ² /(V · s
p-channel	230		cm ² /(V·s
Do	ping ^c		
n ⁺ active	5	±4	10 ¹⁸ /cm ³
p ⁺ active	5	±4	10 ¹⁷ /cm ³
p-well	5	±2	10 ¹⁶ /cm ³
n-substrate	1	±0.1	10 ¹⁶ /cm ³

Physical feature sizes

Tox (gate oxide thickness)	500	± 100	Å
Total lateral diffusion	200	_ 100	
n-channel	0.45	± 0.15	μ
p-channel	0.6	± 0.3	μ
Diffusion depth			,
n ⁺ diffusion	0.45	± 0.15	μ
p ⁺ diffusion	0.6	± 0.3	μ
p-well	3.0	± 30%	μ
Insulating layer sep	aration		
POLY I to POLY II	800	± 100	Å
Metal 1 to Substrate	1.55	± 0.15	μ
Metal 1 to Diffusion	0.925	± 0.25	μ
POLY I to Substrate (POLY I on field oxide)	0.75	± 0.1	μ
Metal 1 to POLY I	0.87	± 0.7	μ
Metal 2 to Substrate	2.7	± 0.25	μ
Metal 2 to Metal I	1.2	± 0.1	μ
Metal 2 to POLY I	2.0	± 0.07	μ
Capacitance	s d		
C_{OX} (gate oxide capacitance, n- and p-channel)	0.7	±0.1	fF/μ^2
POLY I to substrate, poly in field	0.045	±0.01	fF/μ^2
POLY II to substrate, poly in field	0.045	± 0.01	fF/μ^2
Metal 1 to substrate, metal in field	0.025	± 0.005	fF/μ^2
Metal 2 to substrate, metal in field	0.014	±0.002	fF/μ^2
POLY I to POLY II	0.44	±0.05	fF/μ^2
POLY I to Metal 1	0.04	±0.01	fF/μ^2
POLY I to Metal 2	0.039	±0.003	fF/μ^2
Metal 1 to Metal 2	0.035	±0.01	fF/μ^2
Metal 1 to diffusion	0.04	±0.01	fF/μ^2
Metal 2 to diffusion	0.02	±0.005	fF/μ^2
n ⁺ diffusion to p-well (junction, bottom)	0.33	±0.17	fF/μ^2
n ⁺ diffusion sidewall (junction, sidewall)	2.6	±0.6	fF/μ
p ⁺ diffusion to substrate (junction, bottom)	0.38	±0.12	fF/μ^2
p ⁺ diffusion sidewall (junction, sidewall)	3.5	±2.0	fF/μ
p-well to substrate (junction, bottom)	0.2	±0.1	fF/μ^2
p-well sidewall (junction, sidewall)	1.6	±1.0	fF/μ
Resistance	s		
Substrate	25	±20%	Ω-cm
p-well	5000	±2500	Ω/\square
n ⁺ diffusion	35	±25	Ω/□
p ⁺ diffusion	80	±55	Ω/□
Metal	0.003	±25%	Ω/\square
Poly	25	±25%	Ω/□
Metal 1-Metal 2 via (3 $\mu \times 3 \mu$ contact)	< 0.1		Ω
Metal 1 contact to POLY I (3 $\mu \times$ 3 μ contact) Metal 1 contact to n ⁺ or p ⁺ diffusion	<10		Ω
MICHAEL L'OURACE LO IL OF D'AITTUSION			

Dimensions

		Microns	Scalable
l. p-well (CIF Brown, M	fask #1ª)		
1.1 Width		5	4λ
1.2 Spacing (different control of the control of	ent potential)	15	10λ
1.3 Spacing (same)	potential)	9	6λ
2. Active (CIF Green, M	(ask #2)		
2.1 Width		4	2λ
2.2 Spacing		4	2λ
7	subs to p-well edge	8	6λ
2.4 n+ active in n-	subs to p-well edge	7	5λ
2.5 n+ active in p-	well to p-well edge	4	2λ
2.6 p ⁺ active in p-	well to p-well edge	1	λ
3. Poly (POLY I) (CIF R	ed, Mask #3)		
3.1 Width		3	2λ
3.2 Spacing		3	2λ
3.3 Field poly to ac	ctive	2	λ
3.4 Poly overlap of	active	3	2λ
3.5 Active overlap	of poly	4	2λ
4. p ⁺ select (CIF Orang	e, Mask #4)		
 4.1 Overlap of acti 	ve	2	λ
4.2 Space to n ⁺ ac	tive	2	λ
4.3 Overlap of char	nnel ^b	3.5	2λ
4.4 Space to chann		3.5	2λ
4.5 Space to p+ se	lect	3	2λ
4.6 Width		3	2λ

7.	Via e	(CIF Purple Hatched, Mask #C1)		
	7.1	Size, exactly	3×3	$2\lambda \times 2\lambda$
	7.2	Separation	3	2λ
	7.3	Space to poly edge	4	2λ
	7.4	Space to contact	3	2λ
	7.5	Overlap by metal 1	2	λ
	7.6	Overlap by metal 2	2	λ
	7.7	Space to active edge	3	2λ
8.	Meta	1 2 (CIF Orange Hatched, Mask #C2)		
	8.1	Width	5	3λ
	8.2	Spacing	5	3λ
	8.3	Bonding pad size	100×100	$100 \ \mu \times 100 \ \mu$
	8.4	Probe pad size	75×75	$75 \mu \times 75 \mu$
	8.5	Bonding pad separation	50	50 μ
	8.6	Bonding to probe pad	30	30 μ
	8.7	Probe pad separation	30	30 μ
	8.8	Pad to circuitry	40	40 μ
	8.9	Maximum current density	$0.8 \text{ mA/}\mu$	$0.8~\mathrm{mA}/\mu$
9.	Passi	vation (CIF Purple Dashed, Mask #8)		
	9.1	Bonding pad opening	90×90	$90 \mu \times 90 \mu$
	9.2	Probe pad opening	65 × 65	$65 \mu \times 65 \mu$
10.	Meta	2 crossing coincident metal 1 and poly		
	10.1	Metal 1 to poly edge spacing	,	
		when crossing metal 2	2	λ
	10.2	Rule domain	2	λ
11.	Elect	rode (POLY II)h (CIF Purple Hatched, M	fask #A1)	
	11.1		3	2λ
	11.2	Spacing	3	2λ
	11.3		2	λ
	11.4	Space to contact	3	2λ